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The macroscopic dispersion of tracer in microscopically disordered fluid flow can 
ultimately, a t  large times, be described by an advection4iffusion equation. But 
before this asymptotic regime is reached there is an intermediate regime in which 
first and second spatial moments of the distribution are proportional to t” .  
Conventional advection-diffusion (which applies at  large times) has v = 1 but in the 
intermediate regime v < 1. This phenomenon is referred to as ‘anomalous diffusion’ 
and this article discusses the special case v = + in detail. This particular value of v 
results from tracer dispersion in a central pipe with many stagnant side branches 
leading away from it. The tracer is “held up’ or ‘arrested’ when it wanders into the 
side branches and so the dispersion in the central duct is more gradual than in 
conventional advection-diffusion (i.e. v = + < 1).  

This particular example serves as an entry point into a more general class of 
models which describe tracer arrest in closed pockets of recirculation, permeable 
particles, etc. with an integro-differential equation. In  this view tracer is arrested and 
detained at  a particular site for a random period. A quantity of fundamental 
importance in formulating a continuum model of this interrupted random walk is the 
distribution of stopping times a t  a site. Distributions with slowly decaying tails (long 
sojourns) produce anomalous diffusion while the conventional model results from 
distributions with short tails. 

1. Introduction 
The macroscopic spread of a passive scalar in a porous medium, in a shear flow or 

in a spatially disordered set of streamlines (figure 1 )  can often be analysed by 
averaging over microscopic scales or fast variables. This procedure generally yields 
an effective velocity and an effective diffusivity. Perhaps the first example of this is 
Taylor’s (1953) discussion of unidirectional shear dispersion in a pipe. In this problem 
the microscopic process is transverse mixing which occurs on a fast timescale, A / K ,  
where A is the cross-sectional area of the pipe and K the molecular diffusivity of the 
scalar. The macroscopic evolution equation is 

a,f+ u a,f = D a:f, (1.1) 

where f A  dx is the amount of tracer in the pipe between x and x+ dx, and u is the 
sectionally averaged velocity. The effective diffusivity D is given by an expression of 
the form 

where y is a dimensionlcss constant ( y  = 1/48n for laminar Poiseuille flow). The 
original problem was four-dimensional but, after averaging over the cross-section of 

D = K + ~ ( u ’ A / K ) ,  (1.2) 
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FIGURE 1. Schematic illustrations of different configurations which produce hold-up or arrest. (a) 
A periodic geometry in which there are regularly spaced, closed streamline regions (e.g. Shen & 
Floryan 1985). ( b )  Disordered flow around particles or rods. In  addition to the closed streamlines, 
the particles might be permeable. ( e )  A central pipe with semi-infinite side branches orthogonal to 
it. The average spacing between the side branches is I and their sectional area is B .  
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the pipe, the final evolution equation is two-dimensional. The attractions of this 
approach are obvious and it is a special example of a considerably more general 
technique. This is that in many physical problems, after a transient has subsided, the 
state of a system can be described by a few dominant modes which slowly evolve. This 
is a centre manifold of finite dimension (Coullet & Spiegel 1983) and in fact Roberts 
(1988) discusses a simple ‘two zone ’ model of shear dispersion from this perspective. 

Taylor’s theory has subsequently been generalized beyond its initial focus on shear 
dispersion in a pipe. Brenner (1980) gives a general procedure for calculating effective 
velocities and diffusivities in a periodic geometry (e.g. figure l a ) .  An interesting 
application of this formalism to a specific problem is Nadim et al. (1986~).  In  random 
geometries, such as creeping flow through packed beds and porous media, 
macroscopic advection-diffusion models such as (1.1) are still useful and can be 
obtained using statistical arguments (e.g. Saffman 1959; Koch & Brady 1985). 

One limitation of this approach is that it is asymptotic in time : one must wait until 
the tracer has adequately sampled the underlying, microscopic velocity field. Before 
this sampling is complete the spread of the tracer is not macroscopically diffusive and 
cannot be described by a macroscopic diffusion equation such as (1.1). This transient 
behaviour may be prolonged because the tracer must equilibrate within any 
persistent closed streamlines of the microscopic velocity fields (Koch & Brady 1985). 
One says that dispersion of the tracer is ‘ held-up ’ or ‘ arrested ’ and various examples 
are illustrated in figure 1. Averaging over the pockets of recirculation is a slow 
process because it is achieved solely by molecular diffusivity (Rhines & Young 
1983). 

A signature of the transient regime is that the growth of the second spatial 
moment of the tracer concentration is not directly proportional to time. Rather it 
expands as t”, and the exact value of v depends on details of the underlying velocity 
field. For instance, Guyon et al. (1987) argue that in a spatially periodic, two- 
dimensional series of convection rolls between slippery boundaries, v = $. If the rolls 
are enclosed by rigid boundaries, v = (Pomeau, Pumir & Young 1987). Here, 
following common usage in statistical physics, this phenomenon is referred to as 
‘anomalous diffusion ’. In this broader context, anomalous behaviour is associated 
with a random walk on a random lattice (Sahimi et al. 1983; Hughes, Montroll & 
Shlesinger 1982; Derrida & Pomeau 1982). 

The calculation of v in the models above is based on heuristic scaling arguments. 
The present article analyses a simpler, and much more tractable, model of the 
non-diffusive transient regime. The configuration is illustrated schematically in 
figure 1 ( c ) .  Fluid flows through a central pipe which has a multitude of smaller tubes 
branching from it. The side branches are semi-infinite and the fluid within them is 
stagnant. A tracer is introduced into the central artery and its longitudinal 
dispersion is observed on times long compared to the transverse molecular diffusion 
time, A / K .  Of course, without the side branches, this is Taylor’s (1932) shear 
dispersion problem. 

The side branches in figure 1 modify (1.1). In  $92 and 3 their effect is analysed in 
the limit where the longitudinal lengthscale of the tracer distribution, L,  vastly 
exceeds the average spacing, 1, of the branches and where A / K  is the fastest timescale 
in the problem. The longitudinal dispersion of the tracer is then no longer diffusive 
on macroscopic scales such as L. For instance the centre of mass of the tracer 
advances downstream, as (u/h) (At); where h is an inverse timescale defined in (2.8) 
below. The width of the distribution about this centre is eventually also proportional 
to (u/h) (At);, but before this there may be an intermediate regime in which it grows 
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as (D/A)a (At):. The physical explanation is straightforward : when At 2 1 most of the 
tracer has found its way into the side branches and there it is sheltered from the shear 
flow which is solely responsible for longitudinal dispersion. Thus the spread of the 
tracer is arrested by the stagnant, semi-infinite side branches and in this sense their 
cumulative effect is analogous to pockets of closed recirculation in a spatially 
disordered flow. The macroscopic effect of this is anomalous diffusion (and anomalous 
advection). 

The above remarks suggest that an important supplement to the analysis of $82 
and 3 is an estimate of how long the side branches must be so that they are ‘semi- 
infinite ’. If the invading tracer begins to fill up the branches then the mechanism 
described above saturates. This is the limit which is captured by the usual averaging 
procedure in which longitudinal dispersion is diffusive with a macroscopic velocity 
u + u and macroscopic diffusivity D + D.  This is the subject of $4. 

Section 2 , 3  and 4 are a complete analysis of a very particular problem. This might 
serve as a contribution to the understanding of dispersion in branching networks. Of 
more general significance is whether this specific problem suggests a new class of 
models which generalize (1.1) and enable one to understand the various types of hold- 
up illustrated in figure 1. This is the subject of $5  and the conclusion is that there is 
a class of integro-differential models which are a useful point of departure for future 
investigations of hold-up. 

Finally there are several earlier models of the transient, non-diffusive regime. Most 
of these (Smith 1981; Gill & Sankarasubramanian 1970, 1972; Roberts 1986) are 
concerned with unidirectional shear dispersion in which none of the arrest 
mechanisms in figure 1 operate. There is no anomalous diffusion. Other more general 
works (e.g. Nadim et al. 19863) describe the transient behaviour by a systematic 
perturbation hierarchy which adds additional terms, such as f ,  2): f etc. to the right- 
hand side of ( 1 . 1 ) .  It is difficult to say how successful this procedure is a t  capturing 
the essentials of hold-up because consistency requires either stopping a t  (1. l),  or 
including an infinite number of higher-order terms. That is, any finite truncation, 
except for (1.  l ) ,  is not consistent as evidenced by the development of negative tracer 
concentration densities. The connection between this infinite-order perturbation 
expansion and the integro-differential equation in $82 and 5 is obscure. But the 
formulation here is compact and easily analysed. For these reasons it may be 
preferable to an infinite-order perturbation expansion even though the latter may be 
more general. 

2. The arrested dispersion equation 
2.1.  Derivation of the arrested dispersion equation 

Suppose that the tracer is initially injected into the central artery, i.e. there is none 
in the branches. Further, the initial longitudinal scale, L,  is assumed to be much 
greater than the average distance between the branches, 1. Then after a time of order 
A / .  the tracer evolves according to a modified shear dispersion equation 

where f ( x ,  t )  is the concentration in the central artery and g(x, t )  is the tracer which 
is hidden in the branches near x at time t .  Thus in (2.1) the total amount of tracer 
between x and x + dx is ( f  + 9)  A dx where A is the cross-sectional area of the central 
pipe. Only a portion, f A d x ,  is actually in the central pipe but it is this which is 
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advected and shear dispersed by Taylor's mechanism (the second and third terms in 
(2.1)). The remainder of the tracer, gAdx, is sequestered in the side branches and 
once there i t  does not disperse in the x-direction. 

To obtain a closed system, g must be related to f and this is now done by 
considering the invasion of tracer into an individual branch. If 0 is the concentration 
in a branch then 

(2.2a, b) 

is the one-dimensional diffusion problem which governs the spread of tracer in the 
branch. In (2.2a), y is the local, along-branch coordinate. In the boundary condition 
(2.2b), f(t) is the changing concentration at  the mouth of the branch, in the central 
artery. The x dependence of f,  and through it 0, is understood. An integral 
representation of the solution of (2.2) is 

8 = (47CK)-ty f(7) exp(--'/4~(t--7))(t--)-~d7, (2-3) J: 
(e.g. Sneddon 1972). From this, one can readily obtain the total amount of tracer in 
the branch (the 'inventory ') 

$ = BJ: Ody, ( 2 . 4 ~ )  

= &B@f, (2.4b) 

where B is the cross-sectional area of the side branches 9; denotes an integral 
operator 

9 v ~  n-; f(7)(t--)-fd7. (2.5) J: 
Equations (2.4) and (2.5) state that $ is essentially the Abel transform off. The 
notation 9; is useful because one can show (Whittaker & Watson 1927 ; Bleistein & 
Handelsman 1975) that 

9; $ = K ~ B  9; 99, ( 2 . 6 ~ )  

= K i B y f ,  (2.6b) 

( 2 . 6 ~ )  

That is, 9; is the square root of the time integration operator, 9, defined in (2.6b) 
and ( 2 . 6 ~ ) .  Thus using (2.4) and the time derivative of (2.6c), one can go from f to 
$ and vice versa. This is essentially the solution of the Abel integral equation. 

The next step is to relate g(x,t) to E$ where the sum denotes all the branches in 
the vicinity of x. Consider an interval (x, x+ ax), of volume A ~ x ,  in the central artery. 
The length 8x is at  once much greater than 1, and much less than L. Thus all the 
branches in this segment have essentially the same concentration, f(z,t), at  their 
mouths and further there are 6x11 such branches. From (2.4) the total amount of 
tracer in the branches is (Sx/l) KZBgff. However, by definition, this must be equal 
to gA6x so 

g = ht$tf, (2-7) 

where h = B2 K / ~ ~ A ' ,  (2.8) 

is an important inverse timescale for the macroscopic evolution of the tracer. 
Equations (2.1) and (2.7) are the 'arrested dispersion equations'. It is possible to 

eliminate the integral operator (see Appendix A) but in many applications it is 
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probably simplest to work with the system above. This is done in the next section 
where the initial-value problem is solved quite simply by taking spatial moments of 
(2.1) and (2.7). 

Before doing this, it  may be helpful to summarize the approximations made to 
obtain (2.1) and (2.7). There are three of these. First A/K must be a fast timescale 
because (2.1) is a simple modification of Taylor's shear dispersion equation. This is 
the case if A-' $ A/K or equivalently 12A a B2. This is a restriction solely on the 
geometry of the system. Second is the assumption that it is possible to average over 
many branches and use f(x, t) as a concentration boundary condition a t  the mouth 
of an individual branch. This is valid provided L 1 and &. The final, and perhaps 
most interesting, assumption is that the side branches are semi-infinite, i.e. (2.3) and 
its consequence (2.4) are accurate. This assumption is quantitatively assessed in 

2.2. An example of the application of (2.4) 

To conclude this section, (2.4) is used to calculate the amount of tracer injected (the 
' inventory ') by a simple boundary condition 

§ 4. 

f(t) = 1 if 0 < t < T, ( 2 . 9 ~ )  

or f( t )  = 0 if T < t. (2.96) 

This example is intended to make the notion of a fractional integral more intuitive 
and familiar. Additionally we note that from (2.2) there is also a very simple 
expression for the centre of mass of the inventory, namely 

= K : ( y f / &  f ). (2.10) 

Together (2.4) and (2.10) provide a gross, qualitative description of the evolution of 
the tracer in the side branch. 

With f in (2.9) it is easy to evaluate $9 and one finds 

4 = 2B (Kiln)$ ift < T, (2.11a) 

or 4 = 2B(~/n)i[ti-(t-T)i] ift > T. (2.11b) 

The inventory initially grows as ti but then, after f is switched off, it decreases as 
tracer escapes from the branch. Ultimately it decays as t-i. From (2.10) 

B = i(7CKt); ift < T, (2.12 a) 

or tj = $(n~)i[(t)i+(t-T)i] ift > T, (2.12b) 

and so eventually the centre of mass of the diminishing inventory recedes to 
infinity. 

This behaviour is characteristic of a variety of examples. For instance, if 
f = exp (-pt),  then initially the inventory increases as ta but a t  t = 0.854 p-l i t  peaks 
a t  a maximum value of 0.541 B K ~  and thereafter decays. 

a t  large times can easily be obtained by 
expanding (t - 7); in (2.5). One has as t --f co 

The asymptotic behaviour of 4 and 

t 
$9 - [I f(7) d7+ (2t)-l 10~f(~) d7+. ..]/(nt)i, (2.13) 
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provided the various moments, 

f i f (7 )  Pd7, 

exist. Thus generally the inventory will decay as t-i and the centre of mass will move 
to infinity as ti. 

3. Solution of the arrested dispersion equation 

In this section the initial-value problem 

3.1. Spatial moments of the arrested dispersion equation 

a,(f+g)+ua,f = Da:f, g = h w f ,  

f(x, 0) =fo(x), g(x, 0) = 0, 

is solved using the moment method (Aris 1956). Let 

(3.1 a ,  b) 

(3.1 c,  d )  

J -m 

and assume that the initial condition has 

( f o )  = 1, (XfO) = 0. (3.3) 

Note that because of (3.3a), f and g have the dimensions (length)-l. This is a 
convenient assumption which should cause no confusion provided one recalls that 
6(x) also has dimensions (length)-’. 

The first spatial moment of (3.1) is 

( f + g )  = 1, ( 9 )  = h W ( f ) .  (3.4a, b) 

The first of these is simply conservation of the tracer. The second relates the amount 
in the branches to that in the central artery. Using &9i = X one can turn the 
integral equation (3.4) into a first-order linear differential equation. The solution 
is 

(f) = eAt erfc [(ht);], (3.5a) 

- (nht)-i if At B 1, (3.5b) 

and this is shown in figure 2. Thus as time progresses most of the tracer is found in 
the branches and very little in the central artery. Note that this result does not 
exclude the possibility that the amount of tracer in any particular side branch 
ultimately decreases, say as t-i. Consistency simply requires that as time increases 
the tracer is distributed over a larger number of branches. 

The first spatial moment (centre of mass) is obtained by multiplying (3.1) by x and 
then integrating. Thus 

where (f)  is given by ( 3 . 5 ~ ) .  The solution of (3.6,) is 

( X f )  + ( X 9 )  = @/A) [2 (h t / x ) i -  (S)l, - (u/h)[2(ht/np-l+(7Cht)-:+ ...I, 

(3.6a, 6) 

(3.7) 
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FIGURE 2. The function (f) defined in ( 3 . 5 ~ )  is plotted against time. Also shown (the dashed 
curve) is the large time approximation in (3.5b). 

and this shows that the centre of mass ultimately moves downstream as tf. The result 
is not surprising because (3.5) shows that only a small fraction, of order t-f, is subject 
to advection when At 2 1.  Also of interest is 

(xf) = ( u / 4  (f) (2At- 1 )  + ( u / A )  (1  - 2 ( A t / x ) %  ( 3 . 8 ~ )  

(3 .8b)  

which is obtained by combining ( 3 . 6 ~ )  and (3.63) and solving the resulting integral 
equation. Because the centre of mass is at (xf)+(xg) B (xf) this shows that the 
downstream progress of the centre of mass, given by (3.7), is due entirely to the tracer 
jumping episodically from one branch to its neighbours. The tracer is continually 
quitting old branches and invading new ones and it is this process, rather than direct 
dispersion in the central artery, which spreads the tracer. 

The second moment, which is related to the dispersion about the centre of mass, 
is now obtained by solving 

- ( u / A )  [l - (7lht)-f], 

a,(z"f + 9 ) )  = ZU(;zlf) +ZD(f), (3.9) 

and the result is 

(x2(f+g)) = 4 ( ~ / A ) ~ [ A t ( i - ( g ) ) + ( A t / x ) i ( d  -3)+(i-$d) <g>]+(~'ffo), ( 3 . 1 0 ~ )  

- 2 ( ~ / A ) ~ h t + 4 ( ~ / A ) ~ [ d - Z ]  (h t /x) i+  ... (3.10b) 

where A = AD/u2 (3.11) 

is a non-dimensional parameter. Validity of (3.10b) requires that At 2 1 but does not 
suppose any ordering between the two terms on the right-hand side. For instance, it  
is possible that u = 0 in which case the width of the distribution about its centre of 
mass, 

c7 = r<x"(f+s)>-<~(f+s))"~ 
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FIGURE 3. The width B calculate$ from ( 3 . 7 ~ )  and (3 .10~)  with (zzfo) = 0. Various values of d are 
shown. At small time B = (2DtlZ and all the curves are parallel with slope 4. If A 9 1 tpere is an 
intermediate regime with (T cc C. This has slope t in this ln-ln plot. At large time B cc t T  and the 
curves have slope 4. 

grows like tf as in Guyon et al. (1987). When u is non-zero this anomalous behaviour 
occurs when the third term in (3.10b) is much greater than the second. The 
transition, when they are equal, takes place a t  a time AT given by 

AT - 4x-l [A-212.  (3.12) 

Consistency requires AT 2 1 or using (1 . l )  and noting that B2/12A2 must be small (see 
the discussion at the end of §2), this is 

(3.13) 

Hence the existence of the ti regime requires very large values of K ~ / A u ~ .  These 
conclusions are summarized in figure 3 which shows IT as a function of time calculated 
from (3 .10~)  and ( 3 . 7 ~ )  using various values of A .  

The preceeding calculation has provided exact expressions for the spatial moments 
of the tracer distribution. These suggest that in the two complementary limits A % 1 
and A < 1, there is a similarity solution for the complete tracer profile. This section 
is concluded by obtaining these approximate similarity solutions. We begin with the 
easier case. 

3.2. The limit A + 1 

If A is much less than 1 then lateral diffusion in the central artery is weak and it is 
plausible that the dominant balance in ( 3 . 1 ~ )  is 

a,g+ua,f= 0. (3.14) 

It is clear physically that in this approximation no tracer can move upstream. 
Applying the operator & to the above and using (A 4) gives 

Af+ua,g = 0, (3.15) 



138 W .  R. Young 

which is the dominant balance in (A 5) when A 6 1. Now substitution of (3.15) into 
(3.14) produces a ‘ one-sided diffusion ’ equation 

a, g = H(x) ( U 2 / h )  a; 9 ,  (3.16) 

where H(x) is the step function which is zero if x is negative and 1 if x is positive. This 
is the physically appropriate choice of u is positive. The similarity solution of (3.16) 
which corresponds to a compact initial release is 

or 

g = (h/u) (nht1-i exp - x2h/4u2t) if x > 0, ( 3 . 1 7 ~ )  

= o  if x < 0, (3.17b) 

which satisfies the normalization 

gdx = 1 ,  

as in (3.3a). From (3.17) one can verify that 

Jym xgdx = 2(u/$) (htln);, 

x2gdx = 2(u/h)’ht, 

which are the results suggested by the moment calculation. 

(3.18) 

(3.19 a )  

(3.19b) 

3.3. The limit A B 1 

In this case we set u = 0 in (3 . la)  and then tracer moves in the central pipe only 
because of lateral diffusivity i.e. 

a , j +  a, g = D a;f. (3.20) 

It is also convenient to use (A5) as the second relation between f and g 

a,g+hf-Da,g = A ( ~ A ~ ) - ~ s ( x ) ,  (3.21) 

where, as an initial condition appropriate to a similarity solution, f(x, 0) = S(x). An 
approximate similarity solution to (3.20) and (3.21) is found by substituting 

g = (h/D)i(ht)-iG(q), 

f = (h/D);(ht)-iF(q), 

q = x/(DZh-lt)f, 

(3.22a) 

(3.223) 

(3 .22~)  

and retaining only the most slowly decaying powers oft. Thus in (3.20), f ,  is negligible 
and in (3.21) gt is negligible. Also 

6(x)  = (D”-lt)-as(q), (3.23) 

so that (3.20) and (3.21) reduce to 

yG+4F, = 0, F - G  77) = x-’ 2s(r). (3.24a, b)  

One can now eliminate F and obtain the equation 

G,,,+(&)G = - d # ( q ) .  (3.25) 
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An integral representation of the solution is constructed and analysed using a 
Fourier transform in Appendix B. Numerical integration then gives the result in 
figure 4. 

To verify that the similarity solution agrees with the moment calculation one can 
show from (3.24) that 

m m 1 Fdy = d, 1 y2Gdy = 4n-t’ (3.26a, b )  
J -m ‘ J - W  

and these results are all that is needed to demonstrate consistency with (3.5) and 
(3.10). 

Finally, it is interesting to note that because f ,  is negligible in (3.20) and g, is 
negligible in (3.21) these two combine to give 

a,g = h-’D2a:g+ (nht)-hY(z),  (3.27) 

and the result in figure 4 is the similarity solution of this partial differential equation 
which is bounded at x = rf CQ. But a t  first sight (3.27) is not a physical model because 
it is a ‘backwards in time’ hyperdiffusion equation, e.g. homogeneous solutions 
proportional to eikz grow exponentially. One usually expects hyperdiffusion 
equations to have a negative coefficient in front of the fourth derivative term (e.g. 
Gill & Smith 1970). Apparently this is not always so because here is a specific 
example of a physical problem where the unstable case arises naturally. It is clear 
that the last term in (3.27)’ which is related to the persistence of the initial condition, 
is vitally important in allowing one to construct a solution which is bounded on the 
real axis. This is because in the homogeneous version of (3.25) only no unbounded 
solutions on the real axis and the 8’ allows one to patch a solution which is bounded 
at  y = CQ (and unbounded a t  7 = - co) onto one which has the opposite structure. 

4. Finite branches 
4.1. Scaling arguments 

Suppose now that the side branches have finite length, m. Then introducing 

p = K/m2, (4.1) 

pt = W)’ (4.2) 

we expect that the preceeding calculation is invalid when 

because by this time the invading tracer will have encountered the end of the branch. 
When this happens the branch is said to be ‘saturated’. Thus if the non-diffusive 
regimes found in $3 are to be realized then we must have 

p-’ 9 t 2 h-’ B A/K. (4.3) 

This requires that r = Alp = (mB/1A)2 (4.4) 

be much greater than one. Thus if p-l is to exceed h-l then the volume of a side 
branch, mB, must be greater than the volume per branch in the central artery, 
IA . 

4.2. An example: A + 1 

These estimates will now be illustrated by a specific calculation, based on the profile 
(3.17). This is the limit A = hD/u2 + 1 in which particle transport in the central 
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FIGURE 4. The solution of (3.25) with 7 > 0. This function is even with a discontinuous 
derivative a t  7 = 0. Also shown as a dashed curve is the asymptotic approximation in (I3 6). 

artery takes place solely by advection. Given g in (3.17), we can calculate f from 
(3.15) and then use (2.10) to obtain 

~ ( z )  = ( K / A ) ; ( ~ A ~ ) ;  exp (7') erfc(q), (4.5) 

where 72 = (XA)2/4UZht (4.6) 

is the similarity variation. Equation (4.5) is the position of the centre of mass in the 
branches a t  x. At fixed x, as t+ 00 

Y ( X )  - (XKt) ; ,  (4.7) 

which is the behaviour we anticipate on the basis of the simple calculation in $ 2 . 2 .  
Of course when ~ ( x )  is comparable to m the above calculation is inconsistent. This 
happens when t is of order m 2 / m  which is essentially (4.2). 

There is perhaps some residual doubt concerning this conclusion. This is because 
by the time ~ ( x )  is of order m, there may be very little tracer left in the branch. 
Perhaps the ends of the branches are never important because those branches which 
have saturated actually contain a negligible amount of tracer! To support this 
contention one might note that the branch inventory is proportional to g in (3.17) 
and a t  fixed x this ultimately decays as t-t. Again this behaviour is anticipated on the 
basis of the simple calculation in 52.2. To dispel this uncertainty it is helpful to 
calculate 

y" = s," 9ydx/Jom g dz, (4.8) 

i.e. the centre of mass averaged with respect to the concentration. From (3.17) and 
(4.5) one finds 

y" = + ( K t ) ; ,  (4.9) 
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so that saturation actually does occur in branches which contain a significant 
amount of tracer and from (4 .9)  this happens at t - 16 m 2 / K .  While the order of 
magnitude is the same as (4 .2) ,  this is larger by a factor of 50 than the estimate based 
on (4 .7) .  This calculation in (4 .9)  is probably a more accurate estimate of the time 
required before a significant amount of tracer is in saturated branches. 

4.3.  The arrested dispersion equation with Jinite side branches 

It is now straightforward to repeat the calculation in $ 2  and obtain a generalized 
form of (2 .1)  and (2 .7)  which accounts for the finite length of the branches. One 
finds 

a , ( f + g ) + u a , f =  D a i f ,  g = (4.10) 

( 4 . 1 1 ~ )  

(4.11 b)  

and is related to the Jacobi theta function. For future reference, the Laplace 
transform of K is 

(4.12 a )  

= (A/p)t tanh [ ( p / p ) i ] .  (4.12b) 

In the limit p-l P t it  is easy to use ( 4 . l l a )  to show that the results of $02 and 3 
are recovered. In  the complementary case p-l < t ,  (4.11 b) is the more convenient and 
noting from (4.12) that 

E(0) = K( t )d t  = (A/p)i, (4.13 a )  

(4.13b) 

lorn 
ri, 

one can show that (4.10b) reduces to g = r v  and then 

a,c+u,a,c = D,aEc, ( 4 . 1 4 ~ )  

c = f + g ,  (4.14 b )  

( 4 . 1 4 ~ )  (u,, D,) = (1 +r;)-l (u, D). 

The last result, (4.14c),  is intuitively plausible if one notes from (4 .4)  that 

( l+r; ) - l  = ZA/(ZA+mB), ( 4 . 1 5 ~ )  

- - (4.15b) 

In  this limit the tracer distribution is evolving on a timescale which is much longer 
than p-l. Consequently the concentration in each branch is uniform and equal to the 
concentration a t  the mouth in the central artery. Thus g = r p  and the renormalized 
velocity and diffusivity in ( 4 . 1 4 ~ )  follow. This is the macroscopic, diffusive limit 
which is much more generally captured by a formulation such as that of Brenner 
(1980).  

volume of the central artery 
total volume 



142 W .  R. Young 

I emphasize that to obtain ( 4 . 1 4 ~ )  it  has been assumed that 

p-‘ 9 A/K,  (4.16) 

i.e. mixing across the central artery is instantaneous. Reversal of this inequality 
might lead to very different conclusions such as the possibility that D ,  exceeds D. 

5. A general class of models 

system 
The preceding results suggest that as a general model one should study the 

i3 , f+ i3 ,g+uaZf= D a i f ,  g = K ( t - ~ ) f ( ~ ) d 7 ,  ( 5 . l a ,  b )  

where K(7)  is a kernel such as Ai(rt)-;. There are immediately two questions raised 
by this construction. What is the physical interpretation of the kernel and what are 
the asymptotic ( t+  co) properties of (5.1)? 

1: 

5.1. Physical meaning of the kernel 

Consider a single molecule of tracer wandering in the central artery, and suppose that 
its progress is episodically interrupted by some mechanism which arrests it a t  a 
particular site. It stops there for a random period before it escapes back into the 
central artery and resumes its progress. This description is reminiscent of several 
well-known models in statistical physics where a ‘pausing time distribution ’ is used 
to model ‘traps’ (a good review is Montroll & West 1979). A complete discussion of 
the connection between these models and (5 .1)  is beyond the scope of the present 
article. 

In  the preceding sections, arrest or trapping occurs when the molecule wanders 
into a branch and its progress in the central artery resumes only when its random 
walk returns it to the mouth of the branch. 

One can easily imagine other mechanisms which arrest tracer. The walls of the 
central artery might be peppered with sites at which tracer molecules ‘stick’ until 
dislodged by particularly large thermal fluctuations. Or the central artery might be 
a streamtube which winds tortuously through an array of closed persistent eddies as 
in figure 1. Tracer is arrested when it diffuses from the streamtube into one of the 
gyres. This might serve as a model of tracer dispersion in the abyssal ocean where 
bottom topography produces a t  once closed persistent eddies and currents which 
thread between them (Bretherton & Haidvogel 1976). Similar pockets of recirculation 
exist in an unconsolidated porous medium and in this same context tracer can also 
be arrested by permeable particles (Koch & Brady 1985). 

A final example is the periodic array of closed convection cells studied by Guyon 
et al. (1987) and Pomeau et al. (1987). In  these examples there is no preferred 
direction for transport (u = 0) and the resulting dispersion on scales much larger 
than an individual convection cell is similar to the limit A 9 1 studied in $3.3.  Each 
closed convection cell is in a site a t  which tracer is arrested. 

What is common to all these examples, and what we hope to capture with a model 
such as (5.1), is that when a molecule is arrested a stochastic process, such as a 
random walk along the branch, begins. The molecule is released when this process 
passes through an assigned value. For instance in $2 the position of the molecule in 
the branch, y( t ) ,  is a random variable which is initially zero. The molecule is released 
when this random variable returns to zero. I n  this example y ( t )  is the position of the 
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molecule but generally it might be its thermal energy or some other fluctuating 
quantity which must pass through a particular value before the molecule escapes. 

Having introduced the notion of arrest with a pause of random length, it remains 
to relate the probability distribution of these sojourns or ‘stopping times’ to the 
kernel in (5.1). The probability distribution of stopping times of duration 7 will be 
denoted by 4 7 ) .  Thus if N % 1 molecules are simultaneously arrested at t = 0 then 
a t  t = 7 the number still a t  the site is Nk(7) .  The function k(7)  is monotonically 
decreasing and a simple example is the perennially popular exponential distribution 

k ( 7 )  = e-aT, (5 .2)  
which governs stopping times in a process with no memory. That is, no matter how 
long a‘particle has been arrested, there is a constant probability per unit time, a, of 
escaping. This example should also make it clear that k(7)  is the distribution of the 
stopping times, while the density is (-dk/d7). For instance the mean pause is 

(5.3) 

provided the integral exists. 

discussed in $2. In  this instance 
The exponential distribution in (5.2) is clearly not appropriate to  the example 

k(7)  = c-1(/C/7C7)f, (5.4) 

where c is an arbitrary constant with dimensions of speed which is included for 
dimensional consistency. The above non-normalized distribution governs the 
duration of positive excursions (i.e. y > 0 )  in a random walk. Stratonovich (1967, 
particularly chapter 2), is a useful reference which discusses the lack of normalization 
in detail. Our inability to normalize (5.4) is related to the singularity at 7 = 0. From 
the definition of k(7 )  one might have expected that k(0) = 1.  This is the case in simple 
examples such as (5.2), but it is too restrictive when non-stationary processes such 
as diffusion are involved. To interpret (5.4) imagine that a large number of particles 
simultaneously begin a random walk starting in the neighbourhood of y = 0. Suppose 
further, that particles are removed from the ensemble when they pass through 
y = 0. Thus from (5.3) if there are N particles left at  t = 7 there are at 
t = 47 etc. 

From (5.4) the reader may have already anticipated that the kernel in (5.1) is just 
proportional to k(7 ) .  To see how this convolution arises suppose that N(8t)Gt particles 
are arrested when 0 < t < 6t, N(26t)St in the interval 6t < t < 26t and so on. Then at 
a later time, t ,  the number a t  the site is k(t - 87) N(8t)Gt + k(t  - 26t)N(26t)St and so on. 
Thus returning to the continuum model, and arguing that the arrival of tracer 
molecules at  the arrest site is proportional to f, the inventory must be given by an 
expression of the form 

$ = A k(t-~)f(7)d7,  (5 .5)  s: 
where on dimensional grounds A is a constant with the dimensions of (volume/time). 
For the example in 52, where k is given by (5.4), A = Bc. A can be determined by 
supposing that f (7 )  is constant so that eventually the site saturates ($4) and its 
inventory is then $ = fV where V is the ‘effective volume ’ of the site. It then follows 
from (5 .5)  that 

(5.6) A = V/Iam k(7 )  d7 = V/s,  
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where 5 is the average pause at the site. Next if the arrest sites are scattered along 
the central artery with an average spacing 1, then following the argument in $2 

or, comparing this with (5.1), 

K(7)  = (V/ZAT) k(7) .  (5.8) 

This is the final result which expresses the kernel in (5.1) in terms of the properties 
of the arrest sites. It is modified in obvious ways if V and 7 are infinite as in $2. 

In the next subsection we turn to the asymptotic behaviour of solutions of (5.1) as 
t + KI. This analysis will show that waiting time distributions which have a slowly 
decaying tail, such as 7-", produce anomalous diffusion. The model in $2 is a simple 
example of how such slowly decaying distributions arise naturally. Mandelbrot 
(1983) argues that they are generally related to sets of fractal dimension and also 
cites many empirical examples. He emphasizes that often prolonged observation 
does not indicate the existence of an exponential cut-off at  long times. By contrast 
(5.2), which is also frequently observed to govern waiting-time distribution, produces 
conventional diffusion as in (4.14). Accordingly the following analysis treats the two 
cases k -  e-a7 and k -r-" even-handedly. Both are useful models in different 
circumstances. 

5.2. The asymptotic solution of (5.1) 

The solution of (5.1) at large times can now be found using Laplace transforms 

Transforming (5.1) we have 

p(f+g)+ua,.--Da;f=f,, g = ZJ (5.10a, b)  

where the convolution theorem has been used and f o ( x )  is the initial condition. In 
terms of the total concentration 

e" f+@, (5.11) 

we have p(i +rl) E+ a, E--D a: c" = (1 +rl)jo. (5.12) 

The strategy is now to take spatial moments of (5.12) and extract the large t 
behaviour of the moment of c from the small p behaviour of the moments of 6. This 
is done using Tauberian theorems and an exhaustive reference is Bleistein & 
Handelsman (1975). But because we are content to stop at  the first term, the simpler 
result given by theorem 4 in chapter 13 of Feller (1971) suffices in the calculations 
below. 

* 

Using the definition (3.2), the moments of (5.12) are 

(6) = l/P, ( 5 . 1 3 ~ )  

( 2 2 )  = u/p2(1 +Z), (5.13b) 

( ~ ~ 6 )  = [2u2/p3(1 +I?)2] + [ 2 ~ / p ~ ( 1  +I?)] + (x2f0)/p,  ( 5 . 1 3 ~ )  

and broadly speaking there are two cases depending on whether I? is greater than 
order 1 or order 1 asp  + 0. (Because K is positive definite, I? cannot be less than order 
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1, p+O.) From (5.8) this distinction can be related to the asymptotic behaviour of 
stopping-time distribution, k ( ~ ) ,  as T +  03. 

Case ( i ) :  Brief stops 
The easier case is when 

I?+s = O(1) (5.14) 

as p+O. A canonical example of this is the transform pair 

K = K,  e-at, I? = ~ , / ( p  + a) ,  (5.15a, b )  

in which s = K,/a. But generally, from (5.3) and (5.8), we see that 

s = V/EA, (5.16) 

provided that the integral defining 5 converges, i.e. provided there are not too many 
long stops. Substitution of (5.14) into (5.13) now shows that (zc) and ( z2c)  are both 
directly proportional to time. This is the usual diffusive case and further (5.16) shows 
that the renormalized velocity and diffusivity is given by (4.14) and (4.15) provided 
we identify mB with V .  

Case ( i i ) :  Long stops 

of which is the anomalous diffusion found previously. 

with case (i), suppose that 

This is the more interesting case and in fact it  divides into several subcases, one 

But first, in the interests of exhibiting behaviour which contrasts most strongly 

K(7) = K O ,  g ( p )  = K,/p, (5.17a, b )  

i.e. the stopping-time distribution does not decay at all. Thus some fraction of the 
tracer molecules which arrive a t  a site never leave. One might say the tracer is 
absorbed. Substitution of (5.17b) into (5.13) is straightforward, but it is even easier 
to note that (5.1) can be rewritten as 

a,f+K,f+ u a,f = D a z f ,  (5.18) 

which shows the exponential attenuation produced by irreversible absorption. It 
follows that the centre of mass moves only a finite distance, u/K, ,  and spread about 
this centre also eventually ceases. The above result is accurate if A / K &  K i l .  
Stronger absorption is discussed by Smith (1983). 

Greater tracer mobility is allowed by the one parameter family 

K(7)  = St-”, R ( p )  = s q  1 - v) py-1, (5.19a, b )  

where 1 > v 2- 0. This kernel corresponds to a fractional integral of order 1 - v. It 
follows from (5.13) that 

(c> = 1, (5.20 a )  

(.C) - [ u / s r (  1 - v ) r (  1 + v)]t”, (5.206) 

(z“) - [2u2/s2T( 1 - v)2 r( 1 + 2v)]t2” + [2D/ST( 1 - v)”t”, 5 . 2 0 ~ )  

where the first is exact and the remaining two are asymptotic as t + 03. Strictly 
speaking it is not consistent to retain the third term in ( 5 . 2 0 ~ )  when the second is 
non-zero (i.e. when u + O ) .  This is because it is subdominant and a consistent 
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calculation would require retention of smaller terms in the expansion of (1 +R)-l. 
With this proviso, and s = ( A / R ) ~ ,  v = t ,  (5.20) is in agreement with the results in $3.  
In particular (3.10b) shows that the coefficient of the third term in (5 .20~)  is modified 
by a contribution proportional to u2 if higher-order terms in the expansion of 
(1 +r?)-l are retained. 

Equation (5.20) shows that the previous results with v = t are merely a special case 
of a more general class of anomalous diffusion models. As one intuitively expects, if 
longer stops become more common (v+O) then the spread of the tracer is 
increasingly sluggish. In fact (5.18) is recovered continuously in the limit, v = 0. The 
other limit, as v increases, is slightly more subtle. When v > 1, case (i), with the 
renormalized velocity and diffusivity, is easily recovered. But on the border between 
this and (5.20) there is v = 1 which is the final example studied here. 

This case is exceptional as the transform pair 

~ ( 7 )  = s ( i  -e-ar)/T, E ( p )  = s In(1 +ap-'), (5.21) 

indicates. It now follows from (5.13b) that 

(xc) - ut/s In (at), 

and this behaviour is nicely intermediate between conventional advection, in case (i) 
and fractional advection in (5.20b). From (5.13~) the second moment is 

( x 2 c )  N [u2t2/(ln at)2] + [2Dt/ln at], (5.22) 

so that the width of the distribution about the centre of mass, LT, is proportional to 
(tllnat);. Once again, because the third term in (5.22) is subdominant, the constant 
of proportionality is probably modified by terms proportional to u2. 

6. Conclusion 
Tracer arrest or hold-up can be analysed with the integro-differential model in 

(5.1). The kernel is directly proportional to the distribution of stopping times at  the 
sites which hold up the tracer. Different mechanisms produce different kernels but 
the asymptotic ( t - t  03) properties of (5.1) depend only on the behaviour of 4 7 )  at 
large 7.  This provides a useful means of classifying different examples and shows that 
there is a continuous dependence of the model results on changes in K(7) .  Thus at  one 
end of the spectrum there are kernels such as ( 5 . 1 7 ~ )  which do not decay a t  all, and 
ensure that the tracer remains localized forever in the vicinity of its initial release. 
The other limit is a rapidly decaying kernel such as (5.15a) and this produces 
conventional advection-diffusion. In  between these two extremes are kernels with 
relatively slowly decaying algebraic tails such as (5.19a). These produce anomalous 
advection and diffusion as in (5.20). 

Understanding this phenomenon was the initial motivatidn for this work and the 
case v = + has been discussed in some detail in J$S, 3 and 4. The suggestion made 
there is that this type of behaviour (with perhaps different values of v) will be 
characteristic of the various configurations shown in figure 1 - a t  least until the 
isolated pockets become saturated with tracer and (1 . l )  becomes valid. The problem 
which remains is how to find the kernel appropriate to arrest produced by closed 
streamlines. The calculation in Pomeau et al. (1987) suggests that for convection rolls 
between rigid boundaries it is of the form (5.19) with v = I. On the other hand, with 
slippery boundaries, Guyon et al. (1987) get v = 8 so that there is probably not a 
unique answer to this question. 
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Appendix A. Alternative forms of the arrested dispersion equation 

First 
We begin by noting some useful results concerning the operator Yi defined in (2 .5) .  

(A 1) Yft. = [r(l +a)/r(;+a)]t"+f, 

and in particular y4-t = Ri. (A 2) 

A useful identity is 
at&- &a,f = f (o)  ( ~ t ) - f ,  

so that 9; and a, do not commute. Applying 3; to (A 3), and using (A 2 ) ,  gives 

&a,& = f ,  (A 4) 

and it is important to note that this assumes that f does not have any component 
proportional to t-f. For example, (A 2) shows that (A 4) is incorrect iff = t-f. In  the 
applications of (A 4) below f is a non-singular function of time and (A 4) is valid. 

Using the above we can obtain an alternative, equivalent formulation of (2.1) and 
(2.7). Apply At& to (2.1) and use (A 3) to get 

we have a system without any integral operators. For numerical applications this 
formulation has the advantage of not requiring the retention off a t  earlier times. 

Appendix B. The solution of the hyperairy equation 
To obtain an integral representation of the solution of (3.25) one can use a Fourier 

transform 

(The notation is the same as Sneddon 1972.) The Fourier transform of (3.25) is 

and the solution of this is 

6 = (27c)-fec4 erfc 

Now using the inversion formula we have an integral representation 

cos 75ec4 erfc (t2) d5. 
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viz . 
Professor 0. G. Ruehr pointed out that this can be put in a more friendly form, 

The first expression is convenient if one needs to extract the small 7 behaviour while 
the second is more useful if one needs the large 7 behaviour. In  fact the second case 
is very straightforward because (B 5 b )  is the classic form in which Laplace's method 
produces immediate results 

G ( ~ )  (x-t3-i22%) 7-i exp [ - 2-!3$1, 

= 0.3667-5 exp [ -0.4727#], (B 6) 

and this is the dashed curve in figure 4. 
The small 7 behaviour follows from (B 5a)  and its derivatives. One finds 

G(7) = ( 4 2  m)/471) - (2dx)r1  Id+ (4r(i))-172 +0(r3) ,  (B 7) 

and this is what is required to integrate (3.25) numerically starting a t  7 = 0. This is 
how the 'exact' result in figure 4 was obtained. The singular term, 171, in (B 7)  is to  
be expected because of the 8' in (3.25). 
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